List 8

Polynomials

A polynomial in \boldsymbol{x} is a function that can be written in the form
\qquad
_ $x^{n}+\ldots x^{n-1}+\cdots+\ldots x^{2}+\ldots x+\ldots$,
where each blank - called a coefficient-is a real or complex number, possibly including zero. A real polynomial is one whose coefficients are real numbers.
In general, variables other than x can also be used (when complex numbers are involved, it is common, but not required, to use the variable z).

The degree of $f(x)$ is the highest power of x that has a non-zero coefficient.
187. Which of the following are polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$ polynomial
(b) $8 z^{2}+4 z+1$ polynomial
(c) $x^{10}+5 x^{6}-100 x$ polynomial
(d) $\left(z^{5}-2 z+1\right)(z+1)$ polynomial
(e) $\left(z^{5}-2 z+1\right) \sin (z)$ not polynomial
(f) $3 x^{2}+3 x^{1 / 2}-4$ not polynomial
(g) $x^{2}+2^{x}$ not polynomial
(h) $\sqrt{x^{4}+2 x^{2}+1}$ polynomial $\left(x^{2}+1\right)$
(i) $z+\bar{z}$ not polynomial
188. Which of the following are real polynomials (in any variable)?
(a) $8 x^{2}+4 x+1$ yes
(b) $8 z^{2}+4 z+1$ yes
(c) $z^{2}+1$ yes
(d) $z^{2}+i$ yes
(e) $(2+i) x+(4-i) n$
(f) $(z+i)(z-i)$ yes because this is $z^{2}+1$.
189. For each of the following, give the degree if the expression is a polynomial in x, and otherwise write "not a polynomial".
(a) $\frac{5}{2} x^{3}-7 x+8$ degree 3
(e) $\left(x^{2}+2 x-1\right)^{3}$ degree 6
(b) $9 x^{10}$ degree 10
(f) $5 x$ degree 1
(c) $6 x^{5}+\frac{1}{3} x+5 x^{-2}$ not a polynomial
(g) $5 \longdiv { \text { degree } 0 }$
(d) $3 x^{2}+\sin (x)$ not a polynomial
$\hat{*}(\mathrm{~h}) 0$ Some people say $f(x)=0$ does not have a degree. Some people say its degree is $-\infty$.
(i) $\frac{8 x^{4}+7}{2 x}$ not a polynomial
(j) $\frac{8 x^{4}+7 x}{2 x}$ degree 3

The number c is a zero (also called a root) of the polynomial $f(x)$ if $f(c)=0$.
190. Find all the zeroes of $2 x^{2}+x-15 . \frac{5}{2},-3$
191. A cannonball fired at $400 \mathrm{~m} / \mathrm{s}$ at an angle of 52° will have an initial vertical velocity of $400 \sin \left(52^{\circ}\right) \approx 315.2 \mathrm{~m} / \mathrm{s}$, and it will have a height of

$$
h(t)=\frac{-9.8}{2} t^{2}+315.2 t
$$

meters after t seconds. How many seconds will it take for the cannonball to reach the ground?
Without a calculator, $\frac{2 \times 315.2}{9.8}$ is good enough. With calculator, 64.3265 .
192. Find all the roots of $x^{5}-6 x^{4}+34 x^{3} .0,3+5 i, 3-5 i$
193. Given that 4 is one zero of $z^{3}-4 z^{2}+49 z-196$, find all its roots. $4,7 i,-7 i$
194. Given that $1+2 i$ is a zero of $z^{4}-4 z^{3}+12 z^{2}-16 z+15$, find all its zeros.
$1-2 i$ must also be a root.
$\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{(z-(1+2 i))(z-(1-2 i))}$ must be a polynomial.
$\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{z^{2}-2 z+5}$ must be a polynomial.
Long division:

So we have $\frac{z^{4}-4 z^{3}+12 z^{2}-16 z+15}{z^{2}-2 z+5}=z^{2}-2 z+3$.
By the Quadratic Formula, the roots of $z^{2}-2 z+3$ are $1 \pm \sqrt{-2}=1 \pm(\sqrt{2}) i$.
The roots of the original polynomial are $1+2 i, 1-2 i, 1+(\sqrt{2}) i, 1-(\sqrt{2}) i$.
195. The figure below shows four points on the complex plane.

Give an example of a polynomial of degree 4 whose roots are exactly these four points.
$(z+3)(z-(2+2 i))(z-(2-2 i))(z-1)$ or $z^{4}-2 z^{3}-3 z^{2}+28 z-24$ or any constant multiple of those.
196. The figure below shows four points on the complex plane.

(a) Does there exist a polynomial with real coefficients whose roots are exactly these four points? Why or why not? No because if $1+i$ is a root of a real polynomial then $\overline{1+i}=1-i$ must also be one of its roots.
(b) Does there exist a polynomial with complex coefficients whose roots are exactly these four points? Why or why not? Yes: $\left(z-c_{1}\right) \cdots\left(z-c_{4}\right)$ always works.
197. Does there exist a polynomial $f(x)$ with integer coefficients for which...
(a) $f(35)=0$ and $f(7)=0$? yes Example: $f(x)=(x-35)(x-7)=x^{2}-$ $42 x+245$
(b) $f(0)=35$ and $f(7)=0$? yes Example: $f(x)=-5 x+35$
(c) $f(0)=53$ and $f(7)=0$? no
(d) $f(3 i)=5$ and $f(-3 i)=0$? no
198. Does there exist a polynomial $f(x)$ with real coefficients for which...
(a) $f(35)=0$ and $f(7)=0$? (b)-(d) each other condition from Task 197?
(a) $f(35)=0$ and $f(7)=0$? yes
(b) $f(0)=35$ and $f(7)=0$? yes
(c) $f(0)=53$ and $f(7)=0$? yes Example: $f(x)=\frac{-53}{7} x+53$
(d) $f(3 i)=5$ and $f(-3 i)=0$? no
199. Does there exist a polynomial $f(x)$ with complex coefficients for which...
(a) $f(35)=0$ and $f(7)=0 ? \quad$ (b)-(d) each other condition from Task 197?
(a) $f(35)=0$ and $f(7)=0$? yes
(b) $f(0)=35$ and $f(7)=0$? yes
(c) $f(0)=53$ and $f(7)=0$? yes
(d) $f(3 i)=5$ and $f(-3 i)=0$? yes Example: $f(x)=\frac{-5 i}{6} x+\frac{5}{2}$
200. Give the polynomial

$$
f(x)=x^{3}+\ldots x^{2}+\ldots x+\ldots
$$

for which $f(-1)=0, f(3)=0$, and $f(4)=0$.
$(x+1)(x-3)(x-4)=x^{3}-6 x^{2}+5 x+12$.
A polynomial is reducible if it can be factored into two non-constant polynomials; if not, it is irreducible. Whether a polynomial is reducible can depend on what kinds of numbers (e.g., real or complex) are allowed for the coefficients.
201. Are there polynomials $f(x)$ and $g(x)$ such that $f \cdot g=x^{2}-25$?

Yes: $(x-5) \cdot(x+5)$ Is $x^{2}-25$ reducible or irreducible? reducible
202. (a) Are there real polynomials f and g such that $f \cdot g=x^{2}+9$? Yes: $(1) \cdot\left(x^{2}-9\right)$
(b) Are there non-constant real polynomials f and g such that $f \cdot g=x^{2}+9$? No
(c) Are there non-constant polynomials f and g such that $f \cdot g=x^{2}+9$?

$$
\text { Hint: }(3 i)^{2}=-9 . \text { Yes: }(x-3 i) \cdot(x+3 i)
$$

203. (a) Is 19 prime? Yes Why or why not?
(b) Is 13 prime? Why or why not? If you can use "complex integers" (technically called "Gaussian integers") then No because $13=(3+2 i)(3-2 i)$. If you can only use standard integers, then Yes.
(c) Is 11 prime? Yes Why or why not?
(d) Re-read Task 177 and then re-read 203(b).
204. For the polynomial

$$
f(z)=z^{4}+z^{3}+z^{2}+3 z-6=\left(z^{2}+z-2\right)\left(z^{2}+3\right),
$$

(a) find all roots of $f(z) \cdot-2,1, i \sqrt{3},-i \sqrt{3}$
(b) find all zeros of $f(z)$. (same as 204(a))
(c) solve $f(z)=0$ for complex z. $z=-2, z=1, z=\sqrt{3} i, z=-\sqrt{3} i$
(d) factor $f(z)$ into linear complex factors. $(z+2)(z-1)(z-\sqrt{3} i)(z+\sqrt{3} i)$
(e) factor $f(z)$ into irreducible complex factors. (same as 204(d))
205. Factor the following polynomials into irreducible real factors:
(a) $x^{3}+x^{2}+x+1 \quad(x+1)\left(x^{2}+1\right)$
(b) $x^{3}+x^{2}-x-1(x+1)(x+1)(x-1)$ or $(x+1)^{2}(x-1)$
(c) $x^{4}-4 x^{3}+8 x x(x-2)\left(x^{2}-2 x-4\right)$
(d) $x^{4}+5 x^{2}+6\left(x^{2}+2\right)\left(x^{2}+3\right)$
206. Factor the following polynomials into irreducible complex factors:
(a) $z^{3}+z^{2}+z+1(z+1)(z+i)(z-i)$
(b) $z^{3}+z^{2}-z-1 \quad(z+1)(z+1)(z-1)$ or $(z+1)^{2}(z-1)$
(c) $z^{4}-4 z^{3}+8 z z(z-2)(z-\sqrt{5}+1)(z+\sqrt{5}-1)$
(d) $z^{4}+5 z^{2}+6(z+i \sqrt{2})(z-i \sqrt{2})(z+i \sqrt{3})(z-i \sqrt{3})$
207. Factor the polynomials

$$
\begin{aligned}
& F(x)=x^{3}-6 x^{2}-27 x+140 \\
& P(x)=x^{3}-14 x^{2}+74 x-136
\end{aligned}
$$

into irreducible real polynomials, knowing that $F(4)=P(4)=0$.

$$
F(x)=(x-4)(x-7)(x+5) \quad P(x)=(x-4)\left(x^{2}-10 x+34\right)
$$

208. Factor the polynomials from Task 207 into irreducible complex polynomials.

$$
F(x)=(x-4)(x-7)(x+5) \quad P(x)=(x-4)(x-(5-3 i))(x-(5+3 i))
$$

If r is root of the polynomial f, the multiplicity of r is the highest power m for which $(x-r)^{m}$ is a factor of f.
209. For $f(x)=(z-3)^{4}(z+2)$, what is the multiplicity of 3 ? 4
210. For $g(z)=z^{3}+2 z^{2}-7 z+4$, what is the multiplicity of 1 ?
$g=(z-1)^{2}(z+4)$, so the multiplicity of 1 is 2 .
211. The only roots of $z^{5}-4 z^{4}+z^{3}+10 z^{2}-4 z-8$ are -1 (with some multiplicity) and +2 (with some multiplicity). What is the sum of these multiplicities? 5
212. (a) On a real number line (like the blank one shown below), put a dot at every point x for which $x^{6}=1$.

(b) On a complex plane (like the blank one shown below), put a dot at every point z for which $z^{6}=1$.

213. (a) Find all the roots of $f(z)=1+z+z^{2}$.
$e^{120^{\circ} i}, e^{-120^{\circ} i}$
In rectangular form, these are $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ and $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$.
(b) Find all the roots of $g(x)=1+x^{2}+x^{4}$. (x can be complex)
$e^{120^{\circ} i}, e^{-120^{\circ} i}, e^{60^{\circ} i}, e^{-60^{\circ} i}$
In rectangular form, these are $-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \frac{1}{2}+\frac{\sqrt{3}}{2} i, \frac{1}{2}-\frac{\sqrt{3}}{2} i$.
(c) Find all the roots of $h(z)=1+z+z^{2}+z^{3}+z^{4}+z^{5}$. Hint: $h(z)=\frac{1-z^{6}}{1-z}$.

$$
e^{120^{\circ} i}, e^{-120^{\circ} i}, e^{60^{\circ} i}, e^{-60^{\circ} i}, e^{180^{\circ} i}
$$

In rectangular form, these are $-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \frac{1}{2}+\frac{\sqrt{3}}{2} i, \frac{1}{2}-\frac{\sqrt{3}}{2} i,-1$.
$\Sigma 214$. Find the sum of all the roots (that is, add them together) of the polynomial

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9} .
$$

-1 In fact, the sum of the roots of $1+z+z^{2}+\cdots+z^{n}$ is exactly -1 for any whole number n.

